Erdős-Gallai-type results for total monochromatic connection of graphs
نویسندگان
چکیده
منابع مشابه
Nordhaus-Gaddum type results for the Harary index of graphs
The emph{Harary index} $H(G)$ of a connected graph $G$ is defined as $H(G)=sum_{u,vin V(G)}frac{1}{d_G(u,v)}$ where $d_G(u,v)$ is the distance between vertices $u$ and $v$ of $G$. The Steiner distance in a graph, introduced by Chartrand et al. in 1989, is a natural generalization of the concept of classical graph distance. For a connected graph $G$ of order at least $2$ ...
متن کاملOn Erdős-Gallai and Havel-Hakimi algorithms
Havel in 1955 [28], Erdős and Gallai in 1960 [21], Hakimi in 1962 [26], Ruskey, Cohen, Eades and Scott in 1994 [69], Barnes and Savage in 1997 [6], Kohnert in 2004 [49], Tripathi, Venugopalan and West in 2010 [83] proposed a method to decide, whether a sequence of nonnegative integers can be the degree sequence of a simple graph. The running time of their algorithms is Ω(n) in worst case. In th...
متن کاملRamsey-type results for Gallai colorings
A Gallai-coloring (G-coloring) is a generalization of 2-colorings of edges of complete graphs: a G-coloring of a complete graph is an edge coloring such that no triangle is colored with three distinct colors. Here we extend some results known earlier for 2-colorings to G-colorings. We prove that in every G-coloring of Kn there exists each of the following: 1. a monochromatic double star with at...
متن کاملHereditary unigraphs and Erdős-Gallai equalities
We give characterizations of the structure and degree sequence of hereditary unigraphs, those graphs for which every induced subgraph is the unique realization of its degree sequence. The class of hereditary unigraphs properly contains the threshold and matrogenic graphs, and the characterizations presented here naturally generalize those known for these other classes of graphs. The degree sequ...
متن کاملGallai graphs and anti-Gallai graphs
The Gallai graph and the anti-Gallai graph of a graph G have the edges of G as their vertices. Two edges of G are adjacent in the Gallai graph of G if they are incident but do not span a triangle in G; they are adjacent in the anti-Gallai graph of G if they span a triangle in G. In this paper we show: The Four Color Theorem can be equivalently stated in terms of anti-Gallai graphs; the problems...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discussiones Mathematicae Graph Theory
سال: 2019
ISSN: 1234-3099,2083-5892
DOI: 10.7151/dmgt.2095